InP-based polarization rotator-splitter for mid-infrared photonic integration circuits
نویسندگان
چکیده
منابع مشابه
Design of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملdesign of photonic crystal polarization splitter on inp substrate
in this article, we suggested a novel design of polarization splitter based on coupler waveguide on inp substrate at 1.55mm wavelength. photonic crystal structure is consisted of two dimensional (2d) air holes embedded in inp/ingaasp material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. the photonic band gap (pbg) of this structure is determined using t...
متن کاملDesign of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55m wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملBroadband mid-infrared polarization rotator based on optically addressable LCs.
This work proposes a mid-infrared polarization rotator that incorporates a twisted nematic liquid crystal (TNLC) cell with a photo-controllable alignment layer. The TNLC device with a sufficient phase retardation can act as an achromic polarization rotation device over a wide wavelengths range and thus can rotate the polarization of a mid-IR laser beam. The photo-alignment technique enables TNL...
متن کاملPolarization splitter and polarization rotator designs based on transformation optics.
The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2019
ISSN: 2158-3226
DOI: 10.1063/1.5055863